
A Constructivist Framework for Operating Systems
Education: a Pedagogic Proposal Using the SOsim

Luiz Paulo Maia
Federal University of Rio de Janeiro,

NCE/UFRJ, PoBox 2.324, Rio de
Janeiro, RJ, Brazil, 20001-970

55-21-9806-9180

lpmaia@training.com.br

Francis Berenger Machado
PUC-Rio, Rua Marquês de São

Vicente 225, Depto. de Informática,
Rio de Janeiro, RJ, Brazil, 22453-900

55-21-8807-9641

berenger@pobox.com

Ageu C. Pacheco Jr.
Federal University of Rio de Janeiro,

NCE/UFRJ, PoBox 2.324, Rio de
Janeiro, RJ, Brazil, 20001-970

55-21-2598-3256

ageu@nce.ufrj.br

ABSTRACT
A conventional teaching approach, when applied specifically to
the discipline of Operating Systems (OS), seems to fall short of
attaining the overall objective, sometimes leaving the lecturer
unsure about the students’ actual understanding of the dynamic
nature of OS concepts and mechanisms. This paper presents a
pedagogical proposal, based on constructivist ideas, as a means of
making the process of learning OS more efficient and interesting.
The framework presented here uses the SOsim graphical simulator
as a support tool, creating a teaching and learning environment in
which practical experiments can be undertaken as each OS topic is
introduced and explained.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education—Computer Science Education;
D.4.m [Operating Systems]: Miscellaneous.

Keywords
Computer science education, operating systems, pedagogy,
simulation, visualization, graphics.

1. INTRODUCTION
Operating Systems (OS) is an important and mandatory discipline
in many Computer Science, Information Systems and Computer
Engineering curricula. Some of its topics require a careful and
detailed explanation from the lecturer as they often involve
theoretical concepts and somewhat complex mechanisms,
demanding a certain degree of abstraction from the students if
they are to gain a full understanding.

Unlike other disciplines in the computer area, OS is a subject that
does not exhibit a linear structure that allows the lecturer to
progress through the topics in a sequential order. Even
experienced lecturers know that the way they approach these
topics plays a major role in the final results achieved by the

students in their classes. “One of the main characteristics of the
OS discipline resides in the relative difficulty in defining a clear
didactics sequencing for its different topics” [16].

The traditional course model, in which the lecturer follows a text
book, prepares and exhibits slides, and presents some theoretical
exercises, is not enough to assure a precise comprehension of
what is being taught. The problem is due to both the teaching
model and the lack of appropriate tools capable of translating the
theory being presented into a more practical reality. And without a
practical vision the student tends to lose touch and just “float”
around the introduced concepts and mechanisms without gaining
a realistic view of what is really going on.

In recent years, the problems associated with OS teaching have
been the main theme of some important research works [7, 11].
Amongst them, one line of investigation that has produced some
positive results makes use of the constructivist method of
teaching. Although well established in other areas, e.g.
mathematics, constructivism has only appeared relatively recently
in computer science [2].

In this paper we present a constructivist framework to be used and
evaluated in the everyday OS classrooms. In section 2 we briefly
relate some proposals to modify the OS environment that has been
adopted by some undergraduate courses, and that we consider to
provide only partial solutions. Next, we present a general
description of the SOsim graphical simulator. In section 4 we
discuss the underlying concepts of the constructivist theory and its
potential application to OS teaching. Finally we present the results
from an experiment carried out during an Information Systems
undergraduate course at the Pontifical Catholic University of Rio
de Janeiro (PUC-Rio), Brazil.

2. OPERATING SYSTEMS TEACHING
A course on OS that consists only of theoretical lectures does not
necessarily guarantee that the students will obtain a full
comprehension and absorption of the many concepts introduced.
It is essential to reserve part of the program for laboratory classes
and practical exercises. This section presents and discusses the
most common practices used in laboratories in many
undergraduate courses: (1) small practical projects, (2)
modifications at the code level of the operating systems and (3)
the use of simulators.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006…$5.00.

2.1 Small Practice Projects
Some researchers propose “closed labs” supported by real system
working; in most cases, some version of the Unix operating
system [7, 8, 17, 19, 21]. These proposals rely on supervised labs
where students maintain direct contact with the shell command
language and program development by the use of documented
system calls. The programs so developed may include some of
their own system service routine or classic algorithms such as the
ones for communication and synchronization among processes.
Most proposed labs require good knowledge of programming in
either C, or Pascal, or Java.

2.2 Modifications in the OS Code
Teaching methods based upon making alterations to the OS
source code may use one of two forms of environment: real open
source code or educational systems. Open source code systems
such as Linux and FreeBSD, already offer their code for analysis
and modification. The main goal for this code, however, is the
attainment of high levels of performance, making it very difficult
for beginners to understand. Also, apart from complexity, an open
source system comprises thousands of lines of code. Another
awkward aspect is the absence of proper documentation
supporting the use of those systems as teaching tools.

Educational operating systems such as Minix [20] and Xinu [6]
are simplified versions of real open source systems, specifically
developed to serve as a practical framework, for the study of the
internal structure and working behavior of an operating system. A
big advantage of these educational systems is the implicit
availability of literature supporting teachers and students in the
difficult task of understanding the system’s source code.

Independent of the specific operating system being used,
laboratories employing the source code analysis and modification
approach face a series of restrictions. Firstly, they demand good
prior knowledge of computer architecture, Unix and C/C++
programming from both instructors and students. The amount of
time needed to install, alter and debug the system may
compromise the whole process. Apart from that, many institutions
may not have the necessary resources to undertake the laboratory
implementation. As a consequence, many courses on operating
systems do not have the resources to fulfill these requirements,
and if they did so, the course would require an extended amount
of teaching time.

2.3 Use of Simulators
A simulator attempts to create a dynamic and simplified model of
reality. In educational applications we consider its potential far
more efficient than other conventional tools. Within the sphere of
computer science there are simulators supporting the teaching of
various disciplines such as computer networks, programming
techniques, computer architecture and operating systems. As
examples of these we mention here: BASI [4], NACHOS [1],
OSP [12] and RCOS.java [5, 10].

That simulators are just simpler versions of real systems does not
necessarily mean that they are always easy to use. Each simulator
has its own characteristics: some positive, some negative. Also,
most of them demand some time to master its commands and
working behavior, often requiring some previous basic
programming and Unix knowledge.

3. THE SOsim SIMULATOR
The SOsim is a simulator with visual facilities that are mainly
targeted at presenting the various concepts and techniques found
within most modern multiprogramming operating systems in a
more dynamic and clear way [13]. Some of the algorithms it
implements can be found in commercial operating systems such as
HP OpenVMS and Microsoft Windows NT/2000/XP. The
simulator emulates the main subsystems of a multiprogramming
operating system, as the process manager, the scheduler, and a
paged virtual memory. The SOsim was developed to act as a
support tool for OS teaching, allowing lecturers to introduce
concepts and techniques in a clear, dynamic and animated
environment, thus improving communication with the students
and expanding their comprehension and understanding [14].

The program was devised for the Microsoft Windows platform
and exhibits a simple and easy interface, making it possible for the
user to visualize and monitor the various asynchronous events that
occur in OS execution (Figure 1).

 Figure 1. SOsim Simulator version 1.2

The simulator is available via the Internet for free downloading in
Portuguese and English versions [15] and it was developed in
such a way that translation into other languages can be done
easily. There is already a group of international users applying the
software as a supporting tool in the teaching of OS courses.

4. CONSTRUCTIVISM
The classic pedagogic model at all levels of education is based
upon the instructive model, where instructional sequences tackle
the task of transferring the maximum amount of information
between an active teacher and a passive learner. In general, the
instructive model tends to be standardized and homogenized in a
sense that the teaching is mostly directed to the class as a whole,
and not to individuals within the class.

One way to overcome the limitations imposed by the instructive
model is to include concepts from the constructivist theory – the
teacher/instructor plays not only the classic role of transmitting
knowledge the best as he/she can, but also serving as a
“facilitator” of the learning process. In the constructivist model

the student is the central focus of the whole process of knowledge
construction. The development of his/her investigational/critical
predicates and his ability to work cooperatively in group/teams
are equally relevant tasks for the teacher.

4.1 The Constructivist Theory
Constructivist theory was originally conceived by Jean Piaget as a
result of research that began in the forties. His observations of
how children construct their knowledge have, over the years,
formed the basis for his work. From the first experiments, Piaget
developed many theories, describing the stages of a child’s
cognitive development. Supported by his extensive research work,
Piaget established an analysis methodology that set the basis for
his learning theory, which is known as Genetic Epistemology
[18].

Piaget proposes a hybrid model based on cognitive mechanisms
from the species (epistemic being) and from the individual
(psychological being), so that the knowledge is not just inherently
related to the one individual, nor developed by its own
conditioning. In the constructivist theory, knowledge is absorbed
by progressive structuring of the experience, evolving by means of
an interactive process of construction. According to Piaget’s
theories, knowledge, at any level, is generated by a radical
interaction between the individual and their environment,
departing from structures previously existent in the individual.

The development of the constructivist knowledge by Piaget is
based on the mechanisms known as assimilation and
accommodation, which are part of a process called equilibrium.
Considering a maturated biologic stage the individual constructs a
broad structure of knowledge through the association of ideas,
interaction with objects, and the transmission of information
received from the environment. If this structure is not consistent
with live experiences, then a constructive error is characterized,
and this makes the individual to react to the assimilation. In this
case, the individual should begin to reconstruct his hypothesis to a
point where the new data may be completely assimilated. This is
the mechanism known as accommodation, where “the individual
begins to change as a consequence of resistance imposed by the
object” [16].

The constructive error applies in an unbalanced situation, which
in turn generates a new intellectual action to reach a new
equilibrium. According to Piaget, this dynamic process of
knowledge construction based on the error is a necessary step
towards cognitive development.

4.2 The Constructivist Pedagogic Model
In pedagogic models based on the constructivist theory, the
student should construct their own knowledge instead of passively
absorbing it in a classroom or by consulting text books. This way
of learning demands that the student not only discovers the facts,
but also creates mental models from them that may result in
knowledge construction. The task of supervising and stimulating
the students in achieving this goal is assigned to the teacher, who
must be simultaneously aware of the individual cognitive
structures of all the students, which in turns makes the method
pedagogically more complex than the classical instruction.

Finemman and Bootz [9] outline that under the constructivist
theory, the collaborative and support processes of the social

negotiation of meanings are especially relevant, insofar as each
student has their own perspective. The dialogue exposes the pupil
to the multiple perspectives that share the environment, allowing a
more precise understanding through the interaction with other
classmates. Maziero [16] states that subject-object interaction is
the basis of knowledge construction, as this is not in the subject
nor in the object, but in the simultaneous interaction between
them.

The constructivist model recognizes the benefit achieved when
students participate in tasks that allow the active construction of
their own knowledge domain. In order to do this the teacher
requires a solid grounding in Piagetian fundamentals, as well as
an ability to create the proper teaching platforms for the
constructivist pedagogic models. One of the main aspects in the
construction of this type of environment is the teacher’s full
perception of the master-pupil dyad that, as in all learning
processes, involves a very strong interaction between subject and
object.

Table 1 provides some comparisons between conventional and
constructivist classrooms [3].

Table 1. Conventional versus Constructivist Classrooms

Conventional Constructivist
Students fundamentally work
alone.

Students fundamentally work
in groups.

A high degree of importance is
assigned to pre-established
discipline curriculum sequence.

The answering for questions
raised by the students is high
valued.

The academic activity is
fundamentally based in text and
exercise books.

The activity is mainly based
on primary data sources and
practical hands-on devices.

The process of learning
evaluation is dissociated from
the teaching process and is
normally accessed by means of
tests and exams.

The evaluation is interlinked
to the teaching process and it
happens through teacher’s
close monitoring the students’
work.

5. A CONSTRUCTIVIST FRAMEWORK
Many OS courses are based upon teacher presentation and
explanation of concepts, rather than allowing the students to
construct mental knowledge. This model may turn OS lectures
into an extremely abstract and boring process. The constructivist
theory provides an option for developing pedagogic proposals,
possibly leading to better learning outcomes than those obtained
with instructive models.

Our current work proposes a constructivist framework to support
OS learning, over which pedagogic models can be developed for
the discipline at undergraduate level. The main guidelines
followed in developing this constructivist model are listed bellow:

• Teaching should be conducted in an individualized manner;
the teacher paying close attention to each student’s own
absorption capability.

• The student-teacher interaction should have a strong emphasis
on searching for practical and interesting questions.

• Group work should be proposed as a forum to achieve
cooperative learning.

• The teacher should use the OS simulator in conjunction with
theoretical lectures, so that complex concepts underlying the
subject may be better illustrated.

• The students should use the OS simulator in the classroom
and homework as a form of assembling situations difficult to
generate in a real system.

In this proposal, work in the classroom should stimulate the
student’s ability to construct the new knowledge contained in the
course syllabus, not forgetting of course, his previous knowledge
level and assimilation rate. And it is in this context that the use of
an OS simulator establishes a rich student-tool interaction, so that
problems that simulate real situations can be presented. The
facility to develop and test hypothesis, to create alternative
solution proposals and discuss them with the other students and
the teacher, makes the simulator an essential tool in the learning
process.

The simulator as a constructivist tool emphasizes knowledge
construction, as it makes multiple displays of the reality possible,
allowing students to test their own hypotheses and learn from
their successes and mistakes. In this way, as the students become
used to the simulation environment, the software improves their
reflexive thinking. It also allows them to control the experiment,
enabling a more natural evolution of the complexity as the
simulation evolves. Once faced with a specific problem, the
students find real support in the simulator that helps them to
actively search for a solution, improving their ability to identify,
define, and solve problems.

6. AN EXPERIMENTAL MODEL
An experimental pedagogic model, based upon the constructivist
framework, has been implemented and used in OS teaching within
the Information System undergraduate course at PUC-Rio, Brazil.
The model employs the SOsim simulator in the laboratory and
includes group work to be developed in both practical classes and
at home.

The SOsim simulator was adopted because it is a simple tool to
master. It can also illustrate theoretical concepts in an intuitive
and easy way, allowing the student to construct their mental
model of knowledge. Currently, three laboratory classes using the
simulator are reserved in the course syllabus. The first one
explains the concepts related to process management. The second
works out the various scheduling policies and the last approaches
the paged-virtual memory mapping mechanism.

The laboratory classes take place as soon as the corresponding
theory is given in the classroom. Students work in pairs in the lab.
They work on tasks including practical drills, specific situations to
be simulated and analyzed, and some theoretical questions to be
answered with the help of the simulator. As the class evolves, the
students and the teacher discuss and exchange comments on their
simulation results.

During 2003, at the end of each class, we solicited both
quantitative and qualitative feedback from the students. The goal
was to assess the benefits of the simulator as a valid tool in a
constructivist teaching environment. It consisted of seven
questions and was submitted to thirty students. With the exception
of questions six and seven, which could be answered freeform, the
questions were in the form of a Likert scale: “I totally disagree”,

“I partly disagree”, “Don’t agree nor disagree”, “I partly agree”, “I
totally agree”. The questions are listed below:

1. The simulator makes the understanding of theoretical
concepts more satisfying.

2. The simulator helps motivate the student to the subject.
3. The simulator bears an easy and clear interface.
4. The simulator helps the comprehension and absorption of the

theoretical concepts introduced.
5. The simulator is adequate for simulating real situations in an

operating system.
6. Which simulator features do you find more appropriate to OS

learning?
7. What is your overall opinion about the simulator’s use?

The results for the first five objective questions can be seen in
Table 2. Since there were not any students who answered “Totally
disagree”, the column was omitted. In summary, the feedback
shows that the majority of the students felt that learning with the
simulator was enjoyable, it sparked their interest in the subject,
yielded a better comprehension of the concepts, and made it
possible to configure real situations.

Table 2. Research results

Question Partially
disagree

No
opinion

Partially
agree

Totally
agree

Q1 15,8% 84,2%

Q2 15,8% 42,1% 42,1%

Q3 10,5% 21,1% 52,6% 15,8%

Q4 5,3% 15,8% 78,9%

Q5 5,3% 52,6% 42,1%

For question six, most students answered that the software helped
them to better visualize OS concepts and problems, and also that
it had narrowed the gap between theory and practice. For question
seven, they praised and declared their support for the simulator
initiative. Some asked for more lab classes and some suggested
improvements in the software. A sample of these answers is listed
below.

• “The simulator helps the student move beyond theory.”
• “The visualization of concepts introduced in classroom.”
• “Very good! I have learned a lot”!
• “More lab classes! The simulator helps a lot in understanding

the concepts.”
• “Excellent, though other tools should be introduced.”
• “The idea is good, but the software should be improved.”

7. CONCLUSIONS
The adoption of a constructivist pedagogic model opens excellent
perspectives for improvements in Operating Systems’ teaching-
learning. From an experiment which has been in use at Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil, the
problems due to a non-linear structured subject, exhibiting a
significant gap between theory and practice, were minimized.
Apart from that, a qualitative improvement of the whole learning
process is expected. This should be most noticeable in intensive

or short period courses, or in those courses for which some of the
attendants do not comply with the necessary pre-requisites.

In our experience, the SOsim established itself as an important
tool in supporting knowledge construction, by allowing a closer
interaction among the students and the object of study. A big
pedagogic advantage in using such tool is the construction of a
hybrid teaching-learning environment where conventional
expositive lectures and simulations may be combined. This way,
the cooperative approach is applied in classroom and the
constructivist thinking can be introduced to support knowledge
construction, making it possible to experiment with the newly
introduced theories. The use of the simulator might also
contribute to reducing the total time needed for theory
presentation and explanation, perhaps extending the practical
sessions, and possibly creating new laboratories.

It is important to highlight some problems when using a
constructivist model. A common criticism of Piaget’s theories
resides precisely in the absence of a clear and explicit pedagogy
line, as this is not its main purpose. The reasoning behind that is
that the theoretical principle supporting the model is
epistemological and not pedagogical. Another source of problems
is that teachers can be unfamiliar with pedagogic issues. The
constructivist instructor should be acquainted with the principles
proposed by Piaget and master the pedagogic model proposed.

Future expansion of this work will be targeted towards refining
the proposed constructivist model as a form of structuring a
systematic pedagogical practice for teaching OS. We aim to
establish a pedagogic method that might be used by instructors
without previous knowledge of Piaget’s theories. Investigations
into new potential features for the simulator are expected in due
course. Also, in-depth comparative analyses between the effects of
traditional and constructivist methods of OS teaching should be
tackled.

8. REFERENCES
[1] Anderson, T. E., Christopher, W.A. and Procter, S. J. The

Nachos instructional operating system. Available in
http://www.cs.washington.edu/homes/tom/nachos/, 1999.

[2] Ben-Ari, M. Constructivism in computer science education.
In Proceedings of the 29th ACM SIGCSE, 1998.

[3] Brooks, J. G. and Brooks, M. G. Structuring learning around
primary concepts: The quest for essence. In search of
understanding: The case for constructivist classrooms.
Alexandria, VA: Association for Supervision and Curriculum
Development, 1993.

[4] Bynum B. and Camp, T. After you, Alfonse: a mutual
exclusion toolkit - an introdution to BASI. Available in
http://www.mines.edu/fs_home/ tcamp/baci/, 1999.

[5] Chernich, R., Jamieson, B. and Jones, D. RCOS: Yet another
teaching operating system. In Proceedings of the 1st
Australian Conference on Computer Science Education.
1996.

[6] Comer, D. Operating System Design – The XINU Approach.
Prentice-Hall, 1984.

[7] Downey, A. B. Teaching experimental design in an operating
systems class. In Proceedings of the 30th ACM SIGCSE,
1999.

[8] Fekete, A. and Greening, A. Designing closed laboratories
for a computer science course. In Proceedings of the 27th
ACM SIGCSE, 1996.

[9] Finemman, E. and Bootz, S. An Introduction to
constructivism in Instructional Design. Technology and
Teacher Education Annual University of Texas, 1995.

[10] Jones, D. and Newman, A. RCOS.java: a simulated operating
system with animations. Proceedings of the Computer-Based
Learning in Science Conference. Rep. Tcheca, July 2001.

[11] Jones, D. and Newman, A. A Constructivist-based tool for
operating systems education. Proceedings of EdMedia'2002.
Denver, Colorado, June 2002..

[12] Kifer M. and Smolka, S. OSP: An Environment for
Operating Systems (Instructor Version). Addison-Wesley,
1991.

[13] Machado F. B. and Maia, L. P. Arquitetura de Sistemas
Operacionais. 3 ed., LTC, Brazil, 2002.

[14] Maia, L. P. SOsim: A Simulator Supporting Lectures on
Operating Systems. M.S. Thesis, IM/NCE, Federal
University of Rio de Janeiro, Brazil, 2001.

[15] Maia, L. P. SOsim website. Available in
http://www.training.com.br/sosim, 2004.

[16] Maziero, C. A. Reflexões sobre o ensino prático de Sistemas
Operacionais. Anais do X Workshop sobre Educação em
Computação (WEI2002), XXII Congresso da SBC, 2002.

[17] Pérez-Dávila, A. OS bridge between academia and reality. In
Proceedings of the 26th ACM SIGCSE, 1995.

[18] Piaget, Jean. Epistemologia Genética. Ed. Martins Fontes,
2002.

[19] Ramakrishman, S. and Lancaster, A. M. Operating system
projects: linking theory, practice, and use. In Proceedings of
the 24th ACM SIGCSE, 1993.

[20] Tanenbaum, A. S. and Woodhull, A. S. Operating Systems:
Design and Implementation, 2 ed., Prentice-Hall, 1997.

[21] Wagner, T. D. and Ressler, E. K. A practical approach to
reinforcing concepts in introductory operating systems. In
Proceedings of the 28th ACM SIGCSE, 1997.

