
Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-13

A SIMULATOR SUPPORTING LECTURES ON OPERATING SYSTEMS

Luiz Paulo Maia1 and Ageu C. Pacheco Jr.2

1 Luiz Paulo Maia, Federal University of Rio de Janeiro, NCE/UFRJ, PoBox 2.324, Rio de Janeiro, RJ, Brazil, 20001-970 lpmaia@ism.com.br
2 Ageu C. Pacheco Jr., Federal University of Rio de Janeiro, NCE/UFRJ, PoBox 2.324, Rio de Janeiro, RJ, Brazil, 20001-970 ageu@nce.ufrj.br

Abstract A common problem faced by teachers and
Computer Science students is the difficulty in attaining a
proper understanding of the real dynamic nature of the
computing events involved. No matter how solid the
knowledge and the communication ability of the instructor
might be as well as the concentration and close attention
paid by the students, the proper understanding of the
concepts presented is impaired by the implicit static nature
of the class or lecture presentation. In the specific case of
operating systems, after many years lecturing on the subject,
we started looking for a way to improve the approach in
which the concepts and techniques were presented. This
paper is the outcome of this research. It implements a
simulator (SOsim) with visual facilities to serve as an
effective tool for the better teaching & learning of concepts
and techniques in modern operating systems, serving as a
way to render the whole process more efficient.

Index Terms computer science education, operating
systems, simulation.

INTRODUCTION

There are some disciplines in the Computer Science (CS)
curriculum that are more abstract and difficult to teach than
others, e.g., teaching programming language techniques
which can be implemented in Pascal or C. This is so that
what is taught in the classroom can be tested and analyzed
using any kind of programming language. In this case, if
some concept was not perfectly understood, the student’s
program will probably not work or will give wrong results.
In the case of operating systems (OS), lectures are generally
limited to only presenting concepts and mechanisms. On the
whole, no implementation is done in the classroom, making
classes boring and lectures challenging.

After many years lecturing on OS, we began looking for
a way to improve the approach in the teaching of concepts
and techniques. Our idea was to implement an OS simulator
(SOsim) with visual interface to serve as a tool for better
teaching, and also, learning of the concepts and techniques
implemented in modern OS, serving as a way to render the
whole process more efficient [1].

Educational software is part of a broader effort to
improve OS teaching. First, the book “Introduction to
Operating Systems Architecture” [2]-[3] was published to
give teachers and students a formal introduction to the
subject. Now, in its third edition, “Operating Systems
Architecture” [4] has been used for more than ten years by

many educational institutions around the country. A web site
[5] was created to give support in the form of slides,
exercises and email, improving the communication amongst
the OS community. The simulator is a step further in this
effort. It is available on the Internet [6], so that free access to
its educational contents is ensured to students and
instructors.

The SOsim has been used at the CS department of
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Brazil. There it was able to clearly demonstrate how a
simple OS lecture can be improved by showing those aspects
demanded in the complete understanding of the subject. In
this way, the teaching and learning process becomes far
more efficient.

This paper will describe the software and how it can
help teachers and students to have a better teaching and
learning experience. First, we look at what had been done in
this area. Next, the paper examines the pedagogic issues.
Then, we present the simulator model and implementation.
Next, we show SOsim benefits, an assignment and its result.
Finally, concluding remarks and future works are outlined.

PRIOR WORK

There are several papers describing “closed labs” [7] which
propose different ways to improve OS classes. They can be
divided into three main categories: short projects, source
code modification and simulators.

Basically, short projects propose shell interaction and
programming using system calls. Programs can include
developing inter-process communication (IPC) and
synchronization programs, system utilities or some other
classic OS algorithm [8]-[11]. Short projects are easy to
implement and there is no doubt that they really help
students to better understand OS concepts.

Source code modification can be done using
instructional OS, e.g. Minix [12] and Xinu [13], or real OS,
e.g. FreeBSD and Linux. To take advantage of this kind of
lab, students need a very good knowledge of computer
architecture, Unix and C/C++ programming. Because of this,
code modification is very hard to be implemented. Only a
few courses have the time, resources and the skill to try such
an endeavor.

On the other hand, simulators like BASI [14], NACHOS
[15], OSP [16] and RCOS.java [17] are easier to be handled
than source code modification. Nevertheless, the process to
learn, install and run such tools frequently takes time and
requires some knowledge of Unix and programming.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-14

LEARNING AND TEACHING CONSIDERATIONS

Operating Systems is an essential discipline in CS education
(CSE). It involves high levels of theory, abstraction and
design [18]. SOsim tries to integrate all these requisites to
help students build a viable mental model [19].

As an educational tool, SOsim should be used as a way
to improve pedagogic goals. Operating systems’ classes are,
in general, based on the theory of Behaviorism, more
specifically on Instructionism, where the students passively
receive information and knowledge from their instructors
[8]. Teachers indicate a book, follow the chapters according
to a pre-planned syllabus, and finally students are quizzed.
This means that there is little space for questions,
independent thought or interaction between the students.
Instructionism tends to turn OS classes into extremely
abstract ones, compromising the understanding of the
concepts.

An alternative is to change the focus from teacher
dominated to student-centered using a Constructivism
approach. Constructivism is not a new concept, but in CSE,
only recently has it been discussed [19]. This theory claims
that knowledge is actively constructed by the student, not
passively absorved from textbooks and lectures. Students are
encouraged to ask their own questions, implement labs,
make analogies and come to conclusions on their own.
However, introducing Constructivism is not an easy task.
Teachers are not prepared for paradigm shifting, and also,
there is a lack of tools to help them in this change [21].

A simple way to introduce these ideas in OS classes is
by adopting the theory of Constructionism [20]. In
Constructionism, through the computer, students build on
their own knowledge to develop projects which are
presented Prior Work section, i.e. an IPC program, source
code modification or build a simulation.

SOsim allows teachers to introduce the ideas of
Constructivism in traditional classes. A great advantage of
using such a tool is to build a hybrid environment, where
Behaviorism and Constructivism can be mixed together.
The following topics represent some characteristics of a
constructivist tool [22], such as SOsim:
• Engages students in experiences that challenge

conceptions of their existing knowledge.
• Encourages the spirit of questioning, discussion among

students, and teamwork.
• Allows students to explore new situations and learn

from their own mistakes.
• Encourages student autonomy and initiative.
• Doesn’t separate knowing from the process of finding

out.
• Allows students to learn based on case studies.
• Allows problem identification, definition and solution.

PROPOSED MODEL

SOsim´s main goals are to present the concepts and
techniques found in modern OS [23]-[25], such as
multiprogramming, process, scheduling and memory
management. Some implemented algorithms can be seen in
commercial OS, such as HP OpenVMS, Microsoft (MS)
Windows NT, Windows 2000 and Windows XP.

Multiprogramming

Multiprogramming is an old concept, but it is still a
fundamental technique in OS. Multiprogramming allows
computer resources to be shared by many users (process) in
a controlled and safe way. SOsim permits to visualize CPU
and main memory sharing in a dynamic and animated way.

Process

Process is one of the most important concepts in modern OS.
The notion of process is the basis for the understanding of
other important concepts, such as scheduling and virtual
memory.

The simulator implements processes as Process Control
Blocks (PCB), where process information is kept. It is
possible to visualize the hardware context, software context
and virtual address space (Process Page Table) for each
process created. It is not necessary to write a program to
create a process. There are different templates that can be
used to simplify process creation.

As shown in Figure 1, processes follow the classic
three-state-model (ready, running or waiting) and it is
possible to notice all process transitions (ready-to-run, run-
to-ready, run-to-wait and wait-to-ready). Processes can be
suspended, resumed and deleted, like in a real OS.

FIGURE. 1
PROCESSOR MANAGEMENT WINDOW.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-15

Scheduling

Scheduling is the task to choose which process will gain the
CPU. SOsim implements different scheduling algorithms,
starting with preemptive and non-preemptive algorithms.
Preemptive scheduling can be done by using time and
priority. Also, it is possible to select if the priority
scheduling is static or dynamic. Dynamic priority is based
on process type (CPU-bound and IO-bound), defined when
process is created.

Memory Management

All modern OS´s make use of virtual memory. Virtual
memory (VM) is a powerful and sophisticated memory
management technique, which expands main memory limits.
SOsim implements paging as VM management.

As shown in Figure 2, the main memory is divided in
100 page frames and each process can allocate up to five
frames. Processes have their own page table that can be
observed while changes take place. Teachers can use the
simulator to show and explain several VM details and
policies step-by-step, starting from program loading to page
replacement.

FIGURE. 2
MEMORY MANAGEMENT WINDOW.

It is possible to select from two types of page fetch

policy: demand paging or pre-paging. When a process is
created, it is possible to define how many pages will be
allocated in main memory. Thereafter, the system will keep
a static page allocation policy. We chose FIFO with two

page buffers (free page list and modified page list) as page
replacement policy. If there is not enough main memory
space, swapping is started, using a page/swap file.

Additional Features

SOsim offers an on-line log that can be used to follow the
simulation steps. The same log is stored on disk for future
analysis. Moreover, SOsim offers module statistics, allowing
performance evaluation. Metrics, such as throughput, CPU
utilization, page fault rate and queue wait time, can be
followed and analyzed.

ARCHITECTURE AND IMPLEMENTATION

Simulators create dynamics and simple real-world models.
In the CSE, simulators have been used for a long time in
some disciplines, allowing teachers and students to
understand and analyze concepts and mechanisms. However,
to build a simulator is not a simple task. It takes time and
can be very expensive.

One of the most important points in building a visual
education tool is how to show dynamic events in a simple
and comprehensive way. To reach this goal, the simulator
tries to simplify the real model as long as it does not mislead
OS concepts and mechanis ms.

The SOsim project was implemented based on object
oriented (OO) programming, using Borland Delphi as the
programming tool. There are several advantages to using OO
for developing complex software such as a simulator; for
example, code reutilization, extensibility and maintainability
[26]. Borland Delphi was selected as a programming tool
because Pascal is a well-known programming language.
Students with this knowledge can study and modify the
simulator source code, having a hands-on lab experience.
Als o, Delphi is a RAD (Rapid Application Development)
tool, making programming easier and faster.

SOsim was developed to run under MS-Windows
because it is very popular and easy to use. To run the
simulator, it is not necessary to have any knowledge of
programming, just an inexpensive Personal Computer and
some contact with MS-Windows. Users just have to
download the software from the Internet and run it.

BENEFITS

SOsim is a simple graphic interface which serves as an
effective support tool for the better teaching and learning of
the concepts and techniques in modern OS, rendering the
whole process more efficient. Teachers and students should
consider the following benefits:
• It allows users to visualize complex concepts in a

dynamic and animated way, making classes more
interesting than traditional ones.

• It improves communication between teachers and
students, and students themselves, allowing debates and
case studies.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-16

• Simulations can be performed not only in ordinary
classes. Students can use the software in labs or at home
to review concepts or produce their own simulations.

• It is possible to use the simulator as a tool in a distance
education course.

• The software is easy to run. Compilers, linkers,
interpreters, scripts, libraries, or anything else, are not
necessary.

• The software is easy to use. There is no command line
interface, only a graphical interface. Besides that, there
is full documentation available for download, showing
how to execute the main tasks [6].

• It is possible to implement Problem-Based Learning
[27].

• It is totally free of charge.

A SPECIFIC ASSIGNMENT

The simulator is currently being used in OS classes at the
undergraduate level at PUC-Rio. It has been implemented in
two different assignments. In the first assignment, concepts
related to scheduling are explored, while in the second one,
virtual memory. Below we present only the first assignment.

The assignment is executed just after the theoretical part
has been presented in class. Students are then taken to a PC
lab and split into groups of two. For twenty minutes,
educational software and its basic functions are presented to
the students. After that, they have to simulate and analyze
four questions and present their conclusions in forty minutes.
All the questions are related to one another, and in this way,
allows the students to compare the different scheduling
policy. At the end, the students and the teacher discuss the
results of their simulations and share their experiences.

In the first question, each group simulates round-robin
scheduling without priority with two processes: one CPU-
bound and the other IO-bound. After verifying the
distribution of processor time, the student is asked how the
modification of time -slicing affects the behavior of the two
processes.

In the second question, each group simulates round-
robin scheduling with priority and creates two processes:
one CPU-bound with priority four, and the other, IO-bound
with priority three. The student has to compare the processor
distribution to the first exercise and verify how the change of
IO’s time influences the behavior of the processes.

In the third question, the group utilizes the same late
scheduling policy, but produces a starvation, or rather, a
high priority CPU-bound process that does not let the IO-
bound process be executed. In this exercise the student has
to think about the criteria that should be utilized to define
process priority in a multiprogramming environment. All in
the same exercise, it is possible to create a zombie process
just by deleting a process in starvation.

In the last exercise, the groups use round-robin
scheduling with dynamic priority and compare it to the
scheduling with static priority presented in the second

question. In the same exercise the students have to analyze
the advantages of utilizing processes with different boost
priorities in this kind of scheduling.

RESULTS

After finishing the assignment, the student has to fill out a
unanimous survey. There are seven questions which
correspond to thirty students on average. The first five
questions can be answered by choosing one of the following
options: totally disagree, partially disagree, no opinion,
partially agree, and totally agree. Two of the last questions
are open ended and can be answered freely. The questions
are the following:
1. The simulator makes learning theoretical concepts more

satisfying.
2. The simulator elicits interest in the subject.
3. The simulator is easy to use and its interface is clear.
4. Using the simulator helps in the understanding and

assimilation of theoretical concepts.
5. It is interesting to use the simulator to reproduce OS real

situations.
6. In regards to the simulator, which aspects did you find

most interesting in the learning of operational systems?
7. What is your opinion on the use of the simulator?

The results to the student survey can be observed in
Table I. Since there were not any students who answered
“totally disagree,” the column was omitted. In conclusion,
the survey shows that the majority of the students found that
learning with the simulator was more enjoyable, got them
interested in the subject, helped in the understanding of the
concepts, and let them reproduce real life situations. The
answers to the third question showed that the simulator
interface has to be improved.

TABLE I

RESULTS OF STUDENT SURVEY
Question Partially

Disagree
No

Opinion
Partially
Agree

Totally
Agree

Q1 15,79% 84,21%

Q2 15,79% 42,11% 42,11%

Q3 10,53% 21,05% 52,63% 15,79%
Q4 5,26% 15,79% 78,95%

Q5 5,26% 52,63% 42,11%

In question six, the students answered, in general, that

the software helped them to visualize OS concepts and
problems, bringing together theory and practice. Following
are some of the comments from the survey:
• “The simulator helps the student move beyond theory.”
• “The visualization of problems, such as starvation.”
• “The visualization of concepts given in the classroom.”

In question seven the majority of the students supported
and praised the software initiative. Some students asked for
more labs and others suggested software improvements.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-17

Following are some more of the comments given in response
to the survey.
• “Very good. I’ve learnt a lot.”
• “There should be more labs because the simulator helps

a lot in the assimilation of concepts.”
• “I thought it was great, however, other tools should be

included.”
• “The idea is good, but the software has to be improved.”

Beyond the positive results taken from the research, it
was possible to create new situations which were not
predicted in the proposed assignment; for example, the
visualization of the zombie processes came from one of the
groups. This situation had never been explored before, by
even the authors.

CONCLUSION

The SOsim is a simulator with visual facilities to serve as an
effective support tool for the better teaching and learning of
the concepts and techniques in modern operating systems,
serving as a way to render the whole process more efficient.

Teachers can explain dynamic events and their
relationships using a simple-visual-friendly interface. In this
way, students can understand complex concepts observing
how the mechanics really work. It is especially important for
the students who do not have a solid background. It is also
important for short courses that do not have the time to cover
the entire OS curriculum.

It is possible to extend this project and improve the
benefits brought about by the simulator. Some modules are
incomplete and others not yet implemented. We intend to
render the software a more collaborative tool and create a
viable construction of knowledge based upon projects and
working groups.

SOsim has been used at the CS department of PUC-Rio,
Brazil. The number of new users is growing and they have
started to send their comments and suggestions. From this
point on, we expect to create a group of users interested in
improving and participating in the development of SOsim.

ACKNOWLEDGMENT

We would like to thank Prof. Francis Berenger Machado
from the CS department of Pontifical Catholic University of
Rio de Janeiro (PUC-Rio) for his support in this project.

REFERENCES

[1] L. P. Maia, “SOsim: A Simulator Supporting Lectures on Operating
Systems,” M.S. thesis, IM/NCE, Federal Univ. of Rio de Janeiro, Rio
de Janeiro, Brazil, 2001.

[2] F. B. Machado and L. P. Maia, Introduction to Operating Systems
Architecture. Brazil, LTC, 1992.

[3] F. B. Machado and L. P. Maia, Operating Systems Architecture. 2nd
ed., Brazil, LTC, 1997.

[4] F. B. Machado and L. P. Maia, Operating Systems Architecture. 3rd
ed., Brazil, LTC, 2002.

[5] F. B. Machado and L. P. Maia, “Operating Systems Architecture book
website”. http://www.training.com.br/aso, 2001.

[6] L. P. Maia, “SOsim website”. http://www.training.com.br/sosim,
2002.

[7] A. Fekete and A. Greening, “Designing closed laboratories for a
computer science course,” in Proc. 27th ACM SIGCSE, 1996.

[8] A. B. Downey, “Teaching experimental design in an operating
systems class,” in Proc. 30th ACM SIGCSE, 1999.

[9] T. D. Wagner and E. K. Ressler, “A practical approach to reinforcing
concepts in introductory operating systems,” in Proc. 28th ACM
SIGCSE, 1997.

[10] A. Pérez-Dávila, “OS bridge between academia and reality,” in Proc.
26th ACM SIGCSE, 1995.

[11] S. Ramakrishman and A. M. Lancaster, “Operating system projects:
linking theory, practice, and use,” in Proc. 24th ACM SIGCSE, 1993.

[12] A. S. Tanenbaum and A. S. Woodhull, Operating Systems: Design
and Implementation, 2ed., Prentice-Hall, 1997.

[13] D. Comer, Operating System Design – The XINU Approach. Prentice-
Hall, 1984.

[14] B. Bynum and T. Camp, “After you, Alfonse: a mutual exclusion
toolkit - an introdution to BASI”. http://www.mines.edu/fs_home/
tcamp/baci/, 1999.

[15] T. E. Anderson, W. A. Christopher and S. J. Procter, “The Nachos
instructional operating system”. http://www.cs.washington.edu/homes
/tom/nachos/, 1999.

[16] M. Kifer and S. Smolka, OSP: An Environment for Operating Systems
(Instructor Version). Addison-Wesley, 1991.

[17] D. Jones and A. Newman, “RCOS.java: a Simulated Operating
System with Animations”. http://cq-pan.cqu.edu.au/david-jones/
Publications/ Papers_and_Books/RCOS.java/, 2001.

[18] P. Denning, D. Comer, D. Gries, M. Mulder, A. Tucker, A. Turner,
and P. Young, “Computing as discipline,” Communications of ACM,
vol. 32, no. 1, Jan. 1989.

[19] M. Ben-Ari, “Constructivism in computer science education,” in Proc.
29th ACM SIGCSE, 1998.

[20] J.A.Valente, “Computers in education: shifting the pedagogical
paradigm form instructionism to constructionism,'' Logo Exchange,
12(2), 39-42, 1993.

[21] S. Hanley, “On constructivism,” Maryland Collaborative for Teacher
Preparation. http://www.inform.umd.edu/ UMS+State/UMD-
projects/MCTP/Essays/Constructivism.txt, 1994.

[22] D. Jonassen, “Designing constructivist learning environments,”.
http://www.coe.missouri.edu/~jonassen/courses/CLE/index.html,
2003.

[23] A. Silberschatz, Operating System Concepts. 6th ed., Addison-Wesley,
2001.

[24] W. Stallings, Operating Systems Internal and Design Principles. 4 th
ed., Prentice-Hall, 2000.

[25] A. S. Tanenbaum, Modern Operating Systems. 2nd ed., Prentice-Hall,
2001.

[26] G. Booch, Object-Oriented Analysis and Design with Applications.
2nd ed., Addison-Wesley, 1994.

[27] S. Pak, “Situated cognition and Problem-Based Learning: an
implication of instruction,”. http://chd.gse.gmu.edu/immersion/ttac/
fall2000/portfolios/sunghye/Edit704/Problem-based%20learning.htm,
2003.

